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Aircraft sctructures may be modelled by lumping the masses at particular strategic

points and the flexibility or stiffness of the structure is obtained with reference to these

points. Equivalent moments of inertia for the section at these positions are determined. The

lumped masses are calculated based on the assumption that each point will represent the

mass spread on one half of the space on each side. Then these parameters are used in the

diferential equation of motion and the eigen characteristics are determined. A comparison

will be made with results obtained by other established methods.

The lumped mass approach in the dynamic analysis of complicated structures

provides an easier means of predicting the dynamic characteristics of these structures. It

involves less computor time and avoids computational errors that are inherent to the

numerical solution of complicated systems.

INTRODUCTION

The mass of the hypersonic plane is continuously distributed over the entire

structure. Consequently, the real structure has an inf'mite number of degrees of freedom as

far as the dynamic behavior is concerned. However, in the dynamic analysis of structures,

it is possible to replace the real structure with an ideal one consisting of a number of

lumped masses. These are assumed to be connected to one another through elastic massless

elements which, to a certain extant, retain the actual behavior of the original structure. The

method of idealizing actual structures bears significantly on the f'mal results in any vibration

analysis, and the selection of the method and the number of lumped masses for the system

has to made while taking into consideration the various aspects of the structure under

study. The skill and experience of the analyst are very helpful in obtaining the best ideal

model for the structure.

In idealizing the hypersonic plane, there are certain assumptions which have to be

made:

a. Idealization of real strucutres is limited to those structures which deflect in a

linearly elastic manner. It is possible to extend the procedure to structures

loaded in the plastic region, but the solution of such structures is more

complex.

b. To be idealized, a structure must be stable under static loads. This condition

applies for both determinate and indeterminate structures.
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Co All structures demonstrate a certain amount of damping when they are

subjected to dynamic loading conditions. Such damping in structures is

controlled by structural hysteresis and by external friction. In the dynamic

analysis of ordinary structures damping may be necglected in determining

the natural frequencies, but it must be included in the evaluation of mode

shapes under resonant conditions.
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Consider that the frame of the hypersonic plane is fixed at the narrow end to act as a

cantilever and that the masses are lumped as seen in Figure 2. In this study the shear and

rotary inertia effects are ignored, the dynamic loading on the cantilever beam is the inertia

of the moving bodies. The inertia force due to each body is expressed as

Mi Zim = - Mi co2Zim ( 1 )

HYPERSONIC PLANE AT MACH 4

(a)
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where:

Figure 2

Mi

zt=

Ztm

CO

= the lumped mass at a point i

= the deflection of point i in the mth mode

= the acceleration of point i in the mth mode

= the circular frequency of the system vibrating in the ruth mode

The deflection equation for the structure under dynamic loading due to inertial

forces is expressed in the following form:
2

{Zm} = _m [a] [M ] {Zm}

where

(2)

{Zm } = a column matrix of the displacement of the structure in the mth mode.

[A ] = a square matrix of the flexibility coefficients of the structure

[ M ] = a diagonal matrix of the mass of the structure.

Equation ( 2 ) can be expressed in the alternate form as in

0=[D] {Z m } (3)
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where

[D] =_[ [I]-CO2m[A] [M] (4)

To obtain a non-trivial solution for Equation ( 3 ), the determinant of matrix [ D ]

must be identical to zero.

0=IDI (5)

The expansion of Equation ( 4 ) yields the characteristic equation for the stucture

which is a polynomial. The nth degree of the characteristic equation is equal to the rank of

the matrix [ D ]. The roots of this equation represent the eigen values of the structure.

DEVELOPMENT OF THE FLEXIBILITY MATRIX [A]

The model as shown in Figure 2 has displacement in one plane only. The

displacements are considered to be lateral and rotational ones. The shear displacements are

neglected in this model. The orientation of the model displacements is shown in Figure 3.
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Figure 3

= Number of lumped masses

= Length of beam

= Moment of inertia

= Young's modulus of elasticity

= ith mass of the beam/mass moment of inertia
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p = Density of the beam per unit length

Considering tlg_atthe beam is divided into equal segments along the longitudinal

axis, the length of each segment is given by
L

A =N (6)

The mass of a segment of the beam at any point i is

2.788mii - Ng [ 14.4 + ( 114 - xi)], i = 1, N (7a)

The function for xi is given by the following:
L

xl = _ (7b)
L

xi = xi-1 + _- , i - 2, N (7c)

The mass moment of inertia is assumed to be that of a bar with a uniform mass over the

length of the segment. It is given by the expression
12

mmii= mii_,i=N+l,2N (8)

L
where I = _ , mij = mji = 0 and mmij = mmji = 0

The flexibility matrix [A] in Equation 2 is expressed as follows:

where

All Al2 (9)
[A] = A21 A22

[ All ] = is NxN matrix that represents the translational diasplacements

due to unit lateral forces.

[ A12 ] = is NxN matrix that represents the rotational displacements due

to unit lateral forces.

[ A2t ] = is NxN matrix that represents the translational displacements

due to unit rotanational forces.

[ A22 ] = is NxN matrix that represents the rotational displacements due

to unit rotational forces.

The matrix [ All ] is generated from the following equation:
L 3 1

aij = _ x _ [ ( 2N + 1 - 2i) 3 - 3(2N + 1 - 2i) 2 (j-i) + 4 (j-i) 3]

aji-- aij
for i = 1, N and j = i, N.

Matrix [ At2 ] is obtained by taking the derivative of Equation (9).
L2 1

=- (2N+ 1- 2i) 2- 4(j -0 2 ]

(10)

(11)

(12)
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fori = 1, N andj -- i,N.

-- _bii, i = 1, N and j = 1, i ( 13 )

The development of the matrix [ A21 ] follows from the application of unit moments at the position

of the lumped masses on the beam and finding the lateral displacements that ensue from these

actions. These displacements are given by
L 2 1

Cij - 2EI ( _ )[ ( 2N + 1 - 2i )- 2(j- i)] 2 ( 14 )

fori= 1, N andj =i, N.

Cji = Ca + (i- j ) _ dii (15)

,v

fori= 1, Nandj =i,i- 1

The roatational displacements matrix [ A22 ] due to rotational forces is expressed as
1

d j= (16)

fori = 1, N andj = i, N.

= d j, i = 1, N and j = 1, i. ( 17 )

Equations ( 10 ) through ( 17 ) define the flexibilty matrix for the entire structure. Having

determined matrices [ A ] and [ M ], substitute them in Equation 4 and solve for the eigen values.

EXAMPLE

Consider that the hypersonic plane model is subdivided into three parts. The [ A ] and [ M ]

matrices are given below.
Atl A12

[ A ] = A21 A2 2

L3 125 54 7
54 27 4

[Art]- 648EI 7 4 1

L2 25 21 9

[AI2]=-72EI 9 9 5
1 1 1

L2 25 9 1
21 9 1

[A2_]- 72EI 9 5 1

L 531

[A22]=_-[ 3 3 1
111
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where

and

M1 0
.[M] = 0 M2

[Ml ] 1 33.0 0.0 0.0- 0.0 25.3 0.0
386.4 0.0 0.0 17.7

1083 33.0 0.0 0.0
0.0 25.3 0.0

[M2]-386.4 0.0 0.0 17.7

The modulus of elasticity E = 107 psi. The equivalent average moment of inertia I = 42.5

in 4. The length of the beam L = 114 in. With the values of the matrices [ A ] and [ M ] known, the

solution of Equation ( 5 ) provides the following frequency results.

The natural frequencies ensuing from the model with three lumped masses are given in the

first row for the fh'st six modes. Values in subsequent rows correspond to models of 4, 5, 6, and 7

lumped masses.

Natural

Number

of
Elements

3

Frequency in Hz for a Lumped Mass system

Number of Modes

! 2

19.54 1 46.08

19.21 138.15

19.08 134.70

19.00 132.87

18.95 131.78

5 63 4
ml i

396.08 560.60

41 !.! 8 454.22

399.10 509.07

391.36 558.29

386.46 603.53

1329.9!2125.6

4 1041.8 1492.6

5 779.19 1661.1

6 1778.32 1247.7

770.65 1273.17

Natural Frequency in Hz for a Finite Element Model

Number

of

Elements

Number of Modes

1 2 3 4 5 6

18.113 132.15 385.01 874.00 1656.55 3108.26
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CONCLUSION

A lumped mass model for the hypersonic transport airplane has been established.

Algorithms for the determination of the flexibility matrix [A] and the mass and mass moment of

inertia matrix [M] have been found. The natural frequencies for a 3-lumped mass system have

been determined using the lumped mass method and the f'mite dement method. The results from

the two methods converge in the lower three modes and diverge in the upper three ones. The

lumped mass system requires less computer time than the f'mite element model. For models with a

large number of elements, the lumped mass system is more efficient. Results from both models

need to be verified experimentally.
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